Tyrosine phosphorylation of cGMP-gated ion channels is under circadian control in chick retina photoreceptors.
نویسندگان
چکیده
PURPOSE To investigate the role of tyrosine phosphorylation in circadian regulation of cGMP-gated cation channels (CNGCs) of chicken cone photoreceptors. METHODS Chick retinas were studied on the second day of constant darkness (DD) after several days of entrainment to 12:12 hr light-dark (LD) cycles in vitro. Inside-out patch recordings were made during the subjective day and subjective night to quantify circadian changes in the sensitivity of CNGCs to activation by cGMP after treatment with various tyrosine kinase and tyrosine phosphatase inhibitors. Immunoprecipitation and immunoblot analysis were also used to examine tyrosine phosphorylation of CNGCs and closely associated proteins after separation by conventional and two-dimensional SDS-PAGE. RESULTS Treatment with tyrosine kinase inhibitors caused a significant decrease in K(1/2) for cGMP activation of CNGCs in patches excised from cones during the subjective day, but had no effect on K(1/2) during the subjective night. Conversely, treatment with a tyrosine phosphatase inhibitor caused a significant increase in the K(1/2) of CNGCs in patches excised during the subjective night but had no effect on channel K(1/2) during the subjective day. Broad spectrum serine-threonine phosphatase inhibitors had no effect. An 85-kDa tyrosine polypeptide that coimmunoprecipitated with CNGC alpha-subunits was detectable at higher levels during the subjective day than during the subjective night. CNGC alpha-subunits were not tyrosine phosphorylated as a function of the time of day. CONCLUSIONS Circadian control of cone CNGCs appears to entail elevated daytime tyrosine phosphorylation of an approximately 85-kDa auxiliary protein or another subunit of the CNGCs.
منابع مشابه
Developmental expression of retinal cone cGMP-gated channels: evidence for rapid turnover and trophic regulation.
The cyclic GMP-gated cationic channels of vertebrate photoreceptors are essential for visual phototransduction. We have examined the developmental regulation of cGMP-gated channels in morphologically identified cones in the chick retina. Expression of cone-type cGMP-gated channel mRNA can be detected at embryonic day 6 (E6), but expression of functional channels, as accessed by patch-clamp reco...
متن کاملTyrosine phosphorylation of rod cyclic nucleotide-gated channels switches off Ca2+/calmodulin inhibition.
Cyclic nucleotide-gated (CNG) ion channels are crucial for phototransduction in rod photoreceptors. Light triggers a biochemical cascade that reduces the concentration of cGMP in rods, closing CNG channels, which leads to membrane potential hyperpolarization and a decrease in the concentration of intracellular Ca2+. During light adaptation, the sensitivity of CNG channels to cGMP is decreased b...
متن کاملCircadian Regulation of cGMP-Gated Cationic Channels of Chick Retinal Cones: Erk MAP Kinase and Ca21/Calmodulin-Dependent Protein Kinase II
The steady-state phosphorylation of cGMP-gated channels appears to be regulated by a dynamic interplay between protein kinases and phosphatases, as perturbations of these dynamics alter the gating behavior of the channels. For example, the apparent affinity of Gladys Y.-P. Ko, Michael L. Ko, and Stuart E. Dryer* Biological Clocks Program Department of Biology and Biochemistry University of Hous...
متن کاملCircadian phase-dependent modulation of cGMP-gated channels of cone photoreceptors by dopamine and D2 agonist.
The affinity of cGMP-gated ion channels (CNGCs) for cGMP in chick retinal cone photoreceptors is under circadian control. Here we report that dopamine (DA) and D2 receptor agonists evoke phase-dependent shifts in the affinity of CNGCs for activating ligand. Inside-out patch recordings from cultured chick cones were performed at circadian time (CT) 4-7 and CT 16-19 on the second day of constant ...
متن کاملModulation of rod photoreceptor cyclic nucleotide-gated channels by tyrosine phosphorylation.
Cyclic nucleotide-gated (CNG) channels in vertebrate photoreceptors are crucial for transducing light-induced changes in cGMP concentration into electrical signals. In this study, we show that both native and exogenously expressed CNG channels from rods are modulated by tyrosine phosphorylation. The cGMP sensitivity of CNG channels, composed of rod alpha-subunits expressed in Xenopus oocytes, g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2007